S = 0.4	Atomic scattering factors
1597 reflections	from International Tables
174 parameters	for X-ray Crystallography
Only H-atom U's refined	(1974, Vol. IV)
$w = 1/[\sigma^2(F) + 0.063F^2]$	、 , ,

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

	x	у	z	Una
C1	0.7928 (2)	0.0130(2)	0.1325 (1)	0.035(1)
C2	0.5853 (2)	0.0134 (2)	0.1381 (1)	0.034 (1)
C3	0.5157 (3)	-0.1262(2)	0.1848 (1)	0.049(1)
04	0.8580 (2)	0.1457 (2)	0.1164 (1)	0.049(1)
05	0.8879 (2)	-0.0910(2)	0.1418 (2)	0.055(1)
C6	0.5031 (2)	0.0473 (2)	0.0325 (1)	0.033 (1)
C7	0.3007 (2)	0.0820(2)	0.0400 (2)	0.035 (1)
C8	0.2028 (3)	0.0228 (3)	-0.0513(2)	0.053 (1)
C9	0.3549 (3)	-0.0256 (2)	-0.1219 (2)	0.046(1)
C10	0.5101 (3)	-0.0700(2)	-0.0502(1)	0.040(1)
C11	0.6906 (3)	-0.0855(3)	-0.1029(2)	0.062 (1)
012	0.2310 (2)	0.1514 (2)	0.1093 (1)	0.048 (1)

Table 2. Selected geometric parameters (Å, °)

	0	1	- <, /
C2-C1	1.524 (2)	04-C1	1.338 (2)
O5-C1	1.197 (2)	C3—C2	1.523 (2)
C6C2	1.552 (2)	C7-C6	1.523 (2)
C10-C6	1.543 (2)	C8C7	1.507 (3)
O12C7	1.230 (2)	C9—C8	1.522 (3)
C10-C9	1.537 (3)	C11—C10	1.503 (3)
O4-C1-C2	111.2 (2)	O5-C1-C2	125.4 (2)
O5-C1-O4	123.3 (1)	C3-C2-C1	110.6 (2)
C6-C2-C1	110.2 (1)	C6-C2-C3	114.0(1)
C7-C6-C2	111.3 (2)	C10-C6-C2	118.8 (1)
C10-C6-C7	103.2 (1)	C8-C7-C6	109.6 (2)
O12-C7-C6	124.4 (2)	O12-C7-C8	126.0 (2)
C9-C8-C7	104.4 (1)	C10-C9-C8	104.1 (2)
C9-C10-C6	102.9(1)	C11-C10-C6	115.1 (2)
C11-C10-C9	113.1 (2)		(_)
O4-C1-C2-C3	-164	C10-C6-C7-O1	2 166
04-C1-C2-C6	69	C2-C6-C10-C9	157
O5-C1-C2-C3	15	C2-C6-C10-C1	1 -79
O5-C1-C2-C6	-112	C7-C6-C10-C9	34
C1-C2-C6-C7	-167	C7-C6-C10-C1	1 157
C1-C2-C6-C10	73	C6-C7-C8-C9	-9
C3-C2-C6-C7	68	012	169
C3-C2-C6-C10	-52	C7-C8-C9-C10	30
C2-C6-C7-C8	- 144	C8-C9-C10-C6	-40
C2-C6-C7-012	38	C8-C9-C10-C1	1 -165
C10—C6—C7—C8	-15		

The structure was solved by direct methods using *SHELXS86* (Sheldrick, 1985). H atoms were placed in calculated positions, except for H(O4) which was found from difference Fourier maps. Anisotropic least-squares refinement was performed (*SHELX76*; Sheldrick, 1976); H atoms were treated isotropically with a common refined temperature factor ($U = 0.06 \text{ Å}^2$).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71674 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: PA1054]

We are grateful to Rhône-Poulenc-Rorer (Vitry) for generous financial support of this work, and we thank Dr J. C. Barrière for many helpful discussions.

References

- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Ouvrard, N., Rodriguez, J. & Santelli, L. (1993). Tetrahedron Lett. 34, 1149-1150.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175–189. Oxford Univ. Press.

Acta Cryst. (1994). C50, 625-627

2,9-Dioxo-1,6,8,13-tetraoxadispiro[4.1.4.3]tetradeca-3,10-diene, C₁₀H₈O₆

LOUIS COTTIER, GÉRARD DESCOTES AND LAURENT EYMARD

Laboratoire de Chimie Organique II, ESCIL, Université Claude Bernard, Lyon I, URA 463 CNRS, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne CEDEX, France

René Faure

Laboratoire de Chimie Analytique II, Université Claude Bernard, Lyon I, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne CEDEX, France

(Received 18 June 1993; accepted 27 September 1993)

Abstract

The title tricyclic compound was obtained by photooxygenation of bis(5-formylfurfuryl) ether, followed by a dehydration reaction. The compound appears as a *trans* isomer, with respect to the relative positions of the lactonic rings to the dioxane ring, which remains chair shaped. Such a *trans* configuration has been found previously in anemonin, where the two lactonic rings are *trans* with respect to the cyclobutane ring.

Comment

It is known that the photo-oxygenation of furfural derivatives may give hydroxybutenolides (Bernasconi *et al.*, 1984; Cottier, Descotes, Nigay, Parron &

625

Gregoire, 1986). Recently, we were able to stabilize the tertiary alcohol function by an acetylation reaction. Therefore, when this sequence of reactions is applied to bis(5-formylfurfuryl) ether, the acetylation reaction gives the title compound (3). IR and ¹H and ¹³C NMR spectra have not allowed the elucidation of the structure, in particular, the stereoconfiguration of the lactonic rings with respect to the dioxane ring.

The asymmetric unit includes two molecules, as shown in the stereodiagram (Fig. 2) drawn using *PLUTO* (Motherwell & Clegg, 1978). The two molecules have the same configuration (Fig. 1). The compound appears as a *trans* isomer, regarding the

Fig. 1. Molecular configuration of the molecule showing the atom-numbering scheme.

Fig. 2. Stereoscopic view of the title compound.

lactonic rings with respect to the dioxane ring, which remains chair shaped.

The structure of anemonin, which is a similar tricyclic compound with two lactonic rings, has been elucidated previously (Moriarty, Romain, Karle & Karle, 1965). In this compound, the two lactonic rings are also in *trans* positions with respect to the cyclobutane central ring.

Experimental

S = 0.613579 reflections

337 parameters

refined

Only coordinates of H atoms

The photo-oxygenation of the furfuryl derivative (1) gave the hydroxybutenolide (2). The title compound (3) was obtained by an acetylation reaction. Colourless crystals were obtained from a hexane/ethyl acetate solution (1/4).

 $\Delta \rho_{\text{max}} = 0.22 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.27 \text{ e } \text{\AA}^{-3}$ Atomic scattering factors from *SDP* (B. A. Frenz & Associates, Inc., 1982)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²)

$B_{\text{eq}} = (4/3) \sum_{i} \sum_{j} \beta_{ij} \mathbf{a}_{i} \cdot \mathbf{a}_{j}.$

	x	у	z	Beg
01 <i>A</i>	0.7749 (2)	0.0674 (2)	0.0912(1)	4.32 (4)
C2A	0.9373 (4)	0.0593 (3)	0.1283 (2)	4.34 (6)
O2A	0.9486 (3)	-0.0345 (3)	0.1741(1)	6.20 (6)
C3A	1.0748 (4)	0.1884 (3)	0.1029 (2)	4.53 (6)
C4A	0.9972 (3)	0.2664 (3)	0.0544 (2)	3.91 (6)
C5A	0.7979 (3)	0.1977 (3)	0.0441 (2)	3.52 (5)
O6A	0.7086 (2)	0.1083 (2)	-0.0445 (1)	3.44 (4)
C7A	0.6647 (3)	0.2107 (3)	-0.0982 (2)	3.32 (5)
08A	0.8263 (2)	0.3123 (2)	-0.1180(1)	3.54 (4)
C9A	0.8134 (3)	0.2735 (3)	-0.2053 (2)	3.80 (5)
O9A	0.9240 (3)	0.3476 (3)	-0.2393 (1)	5.26 (5)
C10A	0.6411 (3)	0.1315 (3)	-0.2482 (2)	3.98 (6)
C11A	0.5577 (3)	0.0956 (3)	-0.1866 (2)	3.77 (6)
C12A	0.5797 (3)	0.3333 (3)	-0.0549 (2)	4.15 (6)
013A	0.6921 (3)	0.4331 (2)	0.0282(1)	4.63 (4)
C14A	0.7130 (4)	0.3246 (4)	0.0832 (2)	4.76 (7)
01 <i>B</i>	0.4665 (2)	0.4320 (2)	0.6281 (1)	3.92 (4)
C2B	0.4331 (3)	0.4318 (3)	0.7092 (2)	3.92 (6)
O2 <i>B</i>	0.5349 (3)	0.5313 (3)	0.7743 (1)	5.90 (6)
C3B	0.2619 (3)	0.2954 (3)	0.6988 (2)	3.97 (6)
C4B	0.1974 (3)	0.2226 (3)	0.6147 (2)	3.69 (5)
C5B	0.3249 (3)	0.3007 (3)	0.5621 (2)	3.34 (5)
06B	0.2543 (2)	0.3923 (2)	0.5083 (1)	3.46 (4)
C7B	0.1486 (3)	0.2929 (3)	0.4245 (2)	3.38 (5)
08 <i>B</i>	-0.0244 (2)	0.1945 (2)	0.4358 (1)	3.78 (4)
C9B	-0.1524 (3)	0.2393 (3)	0.3893 (2)	4.04 (6)
09 <i>B</i>	-0.3090 (2)	0.1691 (3)	0.3844 (2)	5.78 (6)
C10B	-0.0667 (4)	0.3759 (3)	0.3497 (2)	4.40 (6)
C11 <i>B</i>	0.1064 (3)	0.4095 (3)	0.3716(2)	4.05 (6)
C12B	0.2298 (3)	0.1682 (3)	0.3798 (2)	4.00 (6)
013 <i>B</i>	0.2763 (2)	0.0695 (2)	0.4358(1)	4.30 (4)
C14B	0.4052 (4)	0.1813 (3)	0.5126 (2)	4.33 (6)

Table 2. Selected geometric parameters (Å, °)

	U	• •	
01AC2A	1.374 (4)	O1BC2B	1.359 (3)
01AC5A	1.432 (3)	O1BC5B	1.437 (2)
C2A-02A	1.188 (4)	C2B	1.201 (3)
C2A-C3A	1.480(4)	C2BC3B	1.480 (3)
C3A—C4A	1.305 (4)	C3BC4B	1.309 (3)
C4AC5A	1.511 (3)	C4BC5B	1.510 (4)
C5A-06A	1.423 (3)	C5B—O6B	1.419 (3)
C5A-C14A	1.508 (4)	C5B-C14B	1.503 (4)
O6AC7A	1.404 (3)	O6B—C7B	1.414 (2)
C7A08A	1.455 (3)	C7B—O8B	1.460 (3)
C7AC11A	1.503 (3)	C7B—C11B	1.489 (4)
C7A-C12A	1.506 (4)	C7B-C12B	1.506 (4)
08AC9A	1.344 (3)	O8B—C9B	1.360 (3)
C9A-09A	1.199 (3)	C9B	1.211 (3)
C9A-C10A	1.499 (3)	C9BC10B	1.471 (4)
C10A-C11A	1.308 (4)	C10B-C11B	1.314 (4)
C12AO13A	1.423 (3)	C12BO13B	1.411 (4)
013A—C14A	1.410 (4)	O13B—C14B	1.429 (3)
C2A-01A-C5A	110.4 (2)	C9A-C10A-C11A	107.9 (2)
01A-C2A-02A	121.2 (3)	C7A—C11A—C10A	110.3 (2)
01A-C2A-C3A	107.1 (2)	C7A-C12A-013A	109.4 (2)
02A-C2A-C3A	131.6(3)	C12A—O13A—C14A	109.8 (2)
C2A-C3A-C4A	109.1 (2)	C5A—C14A—O13A	111.2 (2)
C3AC4AC5A	109.9 (2)	C7B	108.5 (2)
O1AC5AC4A	103.5 (2)	O8BC9BO9B	121.4 (3)
01AC5A06A	104.8 (2)	O8B-C9B-C10B	108.9 (2)
01AC5AC14A	107.7 (2)	O9B—C9B—C10B	129.7 (3)
C4AC5AO6A	111.9 (2)	C9B-C10B-C11B	108.3 (3)
C4AC5AC14A	116.0 (2)	C2B	109.9 (2)
O6A-C5A-C14A	111.9 (2)	O1B—C2B—O2B	121.2 (2)
C5A—O6A—C7A	115.4 (2)	O1B-C2B-C3B	108.3 (2)
06A-C7A-08A	109.0 (2)	O2B—C2B—C3B	130.5 (3)
O6B-C7B-C11B	109.2 (2)	C2B—C3B—C4B	108.1 (2)
O6BC7BC12B	112.4 (2)	C3BC4BC5B	110.2 (2)
O8BC7BC11B	104.0 (2)	O1BC5BC4B	103.4 (2)
O8BC7BC12B	108.2 (2)	O1B-C5B-O6B	104.2 (2)

C11 <i>B</i> —C7 <i>B</i> —C12 <i>B</i>	114.3 (2)	O1BC5BC14B	107.7 (2)
O6A-C7A-C11A	108.7 (2)	C4BC5BO6B	112.6 (2)
O6A-C7A-C12A	112.7 (2)	C4BC5BC14B	115.6 (2)
O8A-C7A-C11A	103.6 (2)	O6B-C5B-C14B	112.1 (2)
O8A-C7A-C12A	107.7 (2)	C5BO6BC7B	115.7 (2)
C11A-C7A-C12A	114.7 (2)	O6BC7BO8B	108.3 (2)
C7A-08A-C9A	109.8 (2)	C7BC11BC10B	110.2 (2)
08A—C9A—O9A	123.0 (2)	C7B-C12B-O13B	111.1 (2)
O8A-C9A-C10A	108.3 (2)	C12B-O13B-C14B	109.3 (2)
O9A-C9A-C10A	128.6 (2)	C5B-C14B-O13B	109.4 (2)

The structure was solved with the Enraf-Nonius *SDP* system (B. A. Frenz & Associates, Inc., 1982) using a DEC MicroVAX 3100-80 computer, at the Centre de Diffractométrie Automatique, Université Lyon I.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71679 (46 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: PA1070]

References

- Bernasconi, C., Cottier, L., Descotes, G., Nigay, H., Parron, J. C. & Wisniewski, A. (1984). Bull. Soc. Chim. Fr. II, pp. 323-328.
- Cottier, L., Descotes, G., Nigay, H., Parron, J. C. & Gregoire, V. (1986). Bull. Soc. Chim. Fr. II, pp. 844-850.
- B. A. Frenz & Associates, Inc. (1982). SDP Structure Determination Package. College Station, Texas, USA.
- Moriarty, R. M., Romain, C. R., Karle, I. L. & Karle, J. (1965). J. Am. Chem. Soc. 87, 3251-3252.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.

Acta Cryst. (1994). C50, 627-629

An Intermediate in the Synthesis of Formoterol

K. CHANDRA MOHAN AND K. RAVIKUMAR

Laboratory of Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India

T. V. S. K. VITTAL AND C. K. GIDO

Bio-Organic Laboratory, Indian Institute of Chemical Technology, Hyderabad 500 007, India

(Received 29 April 1993; accepted 8 September 1993)

Abstract

In the title compound, 4-benzyloxy-3-nitrophenacyl bromide, $C_{15}H_{12}BrNO_4$, the two planar nitrophenyl and benzyloxy groups are inclined at a dihedral angle of 17.1 (1)°. The NO₂ group is twisted out of the